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ABSTRACT

The hydrodynamic viscous damping and response statistics of
certain kinds of offshore structures subjected to unidirectional
wave-current excitation have been predicted. By applying the
technique of stochastic linearization, the nonlinear equation for
dynamic response is linearized and then approximate predictions
are made for the damping and response. Examination of the final
derived relations reveals that both waves and current, in
addition to contributing to the excitation force, cause
additional damping. Usefulness of the stochastic linearization
technique has been demonstrated by analyzing a shallow water
Caisson and a deep water guyed tower.

In addition to the dynamic response, the equation for the
mean static response under the combined wave-current excitation

has been derived. It has been demonstrated that the mean static
response depends on the seastate in addition to current.
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1.0 INPRODIZPTON

1.1 General Remarks

Efforts to make more accurate prediction of response of
structures in random environment have resulted in increased
application of probabilistic methods. The theory for prediction
of stationary response of linear structures to Gaussian
excitation is well developed., However, many structures,
including offshore structures, exhibit different forms of
nonlinearity. When non-linearities are important the response
probability distributions are no longer Gaussian and in general
closed form solutions do not exist.

Over the last two decades different approximate technigues
have been developed for solution of this problem. However, their
application to offshore structures is extremely limited.

1.2 Purpose and Scope of the Present Study

In the present study, a method of prediction of the
wave-current induced response of offshore structures is presented
using the Stochastic Linearization method. Bécause of the
inclusion of ocean current, the flow velocity is a nonzero-mean
Gaussian random process. This causes the nonlinear hydrodynamic
force tc be asymmetric. It will he shown that despi*te the
asymmetry the Stochastic Linearization method yields eguations of
manageable complexity.

Two structures of completely different dynamic

characteristics have been chosen as examples. One is a stiff,

shallow water single pile caisson:; and the other is = compliant,
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and the response quantities are predicted in the presence of
waves and current. A number of parametric studies have been
conducted to demonstrate the influence of different structural
parameters on the dynamic behaviour.

The main focus of this study is on the prediction of

response and viscous hydrodynamic damping in moderate sea states.

2.0 NONLINEAR RANDOM VIBRATION

Strictly speaking, linearity in structures is never
completely realized; Nonlinearities are present in stiffness,
damping, mass, or in any combination of these. However, for
offshore structures a primary source of nonlinearity is the
nonlinear hydrodynamic force.

There are several approximate methods for dealing with
nonlinear random vibration problems. The particular problem of
an oscillator with nonlinear stiffness and excited by white noise
is the only problem that has been solved exactly. The method of
solution is commonly known as the Markov Vector method
(Lin,1968) . The differential equation for the joint probability
density of response displacement and velocity, called the
Fokker-Planck equation, has been set up and solved exactly.
However, for nonlinear damping, the Fokker-Planck equation can be
solved numerically only. Recently, this method has been applied
to offshore structures (Rajagopalon, 1982; Brouwers,1982).

In the perturbation method, the solution is expanded in a
power series. First developed by Crandall (Crandall,1963), this

Ll S L e P [ B - L ETsueas,



Generally, the solution is zaopproximated by the first few terms of
the series only. The higher order terms, particularly for
nonwhite excitation, is very laborious to obtain. The response
is approximated as a Gaussian process. Offshore steel jacket
platforms have been analysed by this method (Taylor, 1982).

The functional power series expansion, suggested by Volterra
(Volterra, 1930), has been used by Weiner (Weiner, 1958) for the
nonlinear stochastic process,

In the Gaussian Closure technique, relations between second
and higher order moment statistics are derived from the equation
of motion. The higher order moments are decomposed into the
lower order moments using special Gaussian properties. Finally,
application of Fourier Transformation yields relations between
cross and auto spectra involving the response and excitation
quantities. This technique was proposed by Ivenger (Iyenger,
1375) and later applied to offshore structures by Dunwoody

(Dunwoody, 1980).

3.0 STOCHASTIC LINEARIZATION METHOD

Introduced by Booton (Booton, 1954), this technigue has been
generalised by Foster (Fdsfer, 1968) and later by Iwan and Yang
(Iwan, 1972). This method can handle nonlinearities in stiffness
as well as damping. The reason for choosing for this particular
method over others is that it is easiar to use. Also the

reliability of this method is already proven.



The main steps in arplication of this technigue are as
follows:

(1) Replace rnonlinear terms with equivalent linear terms.

(2) Find the error, which is the difference between the
approximate linear and thke nonlinear terms.

(3) Take the square of error and evaluate its expected value
or first moment,

(4) Minimize the mean square error by taking its derivative
with respect to the equivalent linear coefficients.

(5) Egquate these derivatives to zero to obtain the relations
between linear coefficients and known problem
parameters,

Consider the general equation of motion of a dynamic system
X + g(x,x) = £(t) (3.1)

where g(x,i) is a nonlinear function of x and x but with the
limitation that it is single valued and not an even function.
Assume that an approximate solution is obtained from the linear

eguation

X + 5e§'+ kox = £(t) (3.2)

The error introduced by linearization is:

e = g(x,x) - B X - k X (3.3)

Where ¢ is a2 random variable.
The error is minimized by requiring the mean square error to

be minimum, which implies



7-;- S O (3-4)
ol

<> = 0 (3.5)

Substituting Eq. (3.3) into Eqgs. (3.4) and (3.5) and

interchanging the order of differentiation and expectation we

obtain from Eqg. {3.4)

Q2

<.

o lg(x,%) = 8% - kex]2> -0

e

TS

i.e.,

<glx, %)% = B_%° - k_xk> =0 (3.6)

Similarly from Eg. (3.5)

<g(x,%)% = B_xx = k_x'> = 0 (3.7)

Since the joint expectation of a random variable and its

derivative is zero, Egs. {(3.6) and (3.7) lead to

g - fglx,x)x> (3.8)
e <§2>



.
<

ko= f9lx ) w ' (3.9)

<XZ>

If we further restrict ourselves to the case where the stiffness

and damping nonlinearities are separable then we can write

gix, %) = £,(x) + £,(0) (3.10)

where fl(x) and fz(i) are nonlinear functions of x and x
respectively.
Substitution of Eq. (3.10) in Egs. (3.8) and (3.9) results
in
<if2(£)>

B, = — 2 (3.11)
e <x2>

<xfl (x)>

kK = wo =t (3.12)
<X2>

From Egs. (3.11) and (3.12) we observe that the equivalent
linear coefficients are obtained by equating the input-output
Ccross correlations of the nonlinearities (e.q., ifz(i)) and their

linear approximations (e.g., iﬁek).
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4.0 DAMDING AND PO EIn D0 T T s s T e

4.1 Formulation

Using a beam model, the fiexural wibration eguation of an
offshore structure (e.g. Caisson, Jacket or Guyed Tower) can be

written as

mg (%) 3-?32{- + EIB—% + CS%‘E + Mg—z—%ﬁ(x—l) = f(x,t) (4.1)
at ax ot
Where: ms(x) = Steel mass/unit length
EI = Plexural rigidity
CS = Structural damping coefficient
M = Deck mass

f(x,t) is the loading due to waves and current, which according

to Morison Formula is given by

fix,t) = CMpTu - (CM—l);TY + %pCDD(u+V—§)}u+V—YI (4.2)
Where: V{(x} = Volume of structure/unit length

Cym = Added mass coefficient

o) = Mass density of water

u(x,t) = Wave induced horizontal water particle

velocity
Vix) = Current speed
b = Total projected area perpendicular to

the flow
The formulation is based on the assumption that the Morison

Formula can be applied to express drag in terms of the relative

fluid-structure velocity.
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The first two terms of t(x,t) stand for the inertia forece
and the third term stands for the drag force.

The hydrodynamic load model may not be very acéurate for
multiple leg offshore structures like a Jacket or a Guyed Tower.
This is because the spatial effect on the phase of wave forces on
legs and the loading on secondary cross members are neglected.

Although the structural idealisation is crude, its
consequences are not serious. The simple beam model idealisation
adopted here is not used for solving the Eigenvalue problem. In
the context of the present work, the Eigenvalue solution is
assumed to be known. The structural model adopted here is
satisfactory for investigation of the nonlinear effects of
seastate and current on dynamic response behaviour, and viscous
hydrodynamic damping.

4.1.1 Linearization

The presence of current causes asymmetric drag force. Since
the drag force is a random process with a non-zero mean, the
stationary solution of Eq. (4.1) can be written in the following
form as a superposition:

(4.3)

yi{x,t) yo(x) + oy (x,t)

where yo(x) Mean deterministic offset

y{x,t)= Time dependent response

Substituting Egs. (4.2) and (4.3) into Eq. (4.1) we obtain
4

2 A4 3y 2
m QH% + EIim% + ET 2 + ng% + ME—% §(x-1)
Sat ax ax ot

= cwovﬁ - (C.,-1)pVy + %QCUD(LH-V——';*) u+v—-.}!



[
o

This equation can be recast in the following form

2 4 2
3y 3y 3y 9y ~1) = G- - ; !
m 5 + EI——z~ + CSBt: + M % §(x-1) CMDV\J (CM 1)pVy + g{r)
gt X 3t (4.4)
Where 4
1 | 9 yo 45
g(r) = FpCpD(r+V) r+V| - EI? (4.5)

g(r) is a nonlinear function of r, which is the fluid-structure
relative velocity, defined as
r=u-y (4.6)
In the stochastic linearization approach, g(r) is replaced
by Cer, where C, is the eqguivalent linear coefficient. The
meansquare error between the nonlinear term and its linear

approximation is given by

<{g(r) - Cerl®s = ¢ ‘ (4.7)

The equivalent linear coefficient is obtained by equating

the derivative to zero.

=2

oc 2
= <[g{r) - Cer]™> {(4.8)
ace 9Cy ,

Interchanging the order of differentiation and expectation
leads to

<2[{g(r} - Cer]r> =0



c = iﬁi%lEl (4.9)

e .
<r o

The quantity <g(r)r> is very difficult to evaluate, be-
cause g(r) is related to r in a very complex manner. However,
the quantity on the right hand side of Eg. (4.9) satisfies

the following Gaussian identity.

<3(§)r> = <g_r g(r)> - (4-10)
<r®>
Proof of this identity is in Appendix A,
It turns out that for g(r) as defined in Eg. (4.5), the
right hand side quantity of Egq. {4.10) is far simpler to evaluate

than the left hand side quantity.

The equivalent linear coefficient is

_ .d
Ce = 43? gl{r)> (4.11)

The equivalent linear coefficient, as defined by Eg. {4.11),
is the expected value of the gradient of the nonlinear function
g(r).

Substituting Eq. (4.5) into Eg. (4.11) and carrying out the

differentiation we get

1
C, = ipcDD<21r+v|>

(4.12)
(r+V) is a non zero mean Gaussian random variable. The

quantity |[r+V|is evaluated in Appendix B.
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Using the result of Appendix B

2
c = %QCDDEvﬁ' or exp(- v 5) + 2VErf{ v )] (4.13)
€ m 20r V20T

Where Erf(x) is the Error Function defined as

2 X 2
Erf (x) = —/—— J oexp(-t7)dt
T o

It is also known as the Probability Integral.

or is the rms fluid-structure relative velocity.

Spanos investigated the case of a single degree-of—freedom
system under wave-current loading and arrived at similar
expression for the equivalent damping coefficient (Spanos, 1981).

Replacing the nonlinear term g(r) with the equivalent linear

term, Eq. (4.4) can recast in the following form

2 4 2
- d 9y ay Y ofse
[m_+(C,, 1)90];:}’ + EIBX4 + (cs+ce)Bt + M‘;TC‘Z 8(x- L)

(4.14)

= CMqu + Ceu

From Egqs. (4.13)and (4.14) we observe that waves and current
influence excitation on the structure as well as damping of the

structure.

A component of damping is a function of sea state and
current. Similarly there is a sea state and current dependent

exciting force.



4.1.2 Solutigg

The structure response is expressed in terms of its normal

modes ¢i and generalised coordinates q; -

vi{x,t) =

I~ 2
—

0, (x)q, (¢) (4.15)
For the ith mode, the uncoupled modal eguation is

g, = 4.16
Mlql * Clql * Ry Ni ( )

Where: Mi = Modal mass =

L 2 d 2. 2
é ms(x)¢idx+(CM~l)pé V¢iax + M¢i6(x—L)

Ki = Modal stiffness =

w?M.
i1

L
_ ) _ < d 2
C, = Modal damping = é C oydx + é Cot;dx

o 1 8 .4 2 2 2
= ‘Miwi%i + EQCDD/ = g Dexp(-V"/20r )or¢idx

+ %QCD Id 2DV Erf(V//?cr)¢idx
5 .

Esi = Modal non viscous damping ratio
d = Depth of water
L = Length of structure



Tharefore %o mo?bL 2o o wicnt vraltio

‘e (4.18)

Where gvi = Modal viscous damping ratio

C
D g8 .4 2 2 2
- J, r - .
I [ - 7D exp(-V~/2cr )Or¢idk
1 1 [®]
{(4.19)
. 2
+ 1%20v Ere(—7) ;Zax]
o V2ar

The modal wave-current induced exciting force is given by

. °Ch g .9 2 2
Ni = CMpuo é VZQidx = Uo[/F i D exp(-V"/20r )Gr¢izdx |
a (4.20)
+ [ 2DV Erf (V//for)zqaidx] -
5 :

In Eq. (4.20) the following relations have been used for the
wave induced water particle velocity and acceleration at any

arbitrary depth.

(4.21)
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Where: u, = Wave induced water particle velocity on tha

free surface

u_ = Wave induced water particle acceleration on the
free surface
= : £ = Cosh (kx)
7 Depth attenuation factor Sinh(kd)
k is the wave number.

In terms of the modal quantities, the variance of the

structural response is

N
2
0’2=<(X¢ ) >

s 14 Tt (4.22)

For Caisson or Jacket type offshore structures, the natural
frequencies are widely separated and the damping is light.
Because of this, the responses in different modes can be
considered to be stochastically uncorrelated, With this widely
used established hypothesis in structural dynamics, the cross
terms on the right hand side of Eq. (4.22) vanish and it

simplifies to

N N
2 2 2 _ 2 2
o, = <. 1 ¢ja;> = 1 $i0q] (4.23)
i=1 i=1
Where: qu = rms modal response in the 1 th. mode
g = rms response of structure
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A simple expression for the variance of the relative
fluid-structure velocity can be derived, if the cross correlation
between the fluid particle velocity and the structural velocity

is neglected.

N
2 +. 2 2 o2 2.2 e 2
o, = <(u-y)“> = <u> + <> = <u_z7> 4+ <(‘E $,71;) 7>
i=1
In the above expression, the cross correlation term has been
neglected,
Substituting Eq. (4.23) in this equation leads to
2 2.2 N 2 o9
¢l =2% " + } ¢Soqtu’ (4.24)
r u RIS it

ws; is the natural frequency corresponding to ith mode.

Egs. (4.19), (4.20) and (4.24) indicate that the damping and
excitation in any particular mode depend on the seastate and
responses in all modes. This is a manifestation of the nonlinear
drag force,

The response spectra of an offshore structure has two types
of peaks. One corresponds to the gquasi-static response of the
structure and is located at the wave spectral peak frequency.

The other type is due to the resonant dynamic response of the
Structure at its natural frequencies. In this study we are
primarily -—oncerned about low to moderate sea states and hence
the quasi-static response is negligible. Therefore, the response

variance can be computed considering the dynamic response peak

Ry RN



Since an offshocs coructurs is 1 Yianciv Ao ad g7otemn, bthea

modal response varianc: can be estimated by the half power

bandwidth method as follows

1.25s8, (w) | _
2 1 w=wy
o . = 23 (4-25)
q1 2M, W
1 1

o

Where: Si( ) Spectral density function of modal exciting

force corresponding to i th. mode
A compact expression for the modal exciting force can be

written using the two auxiliary variables Ca and Cu'

N. =Cu +C u (4.26)
1 da O a (@]

Since the fluid particle velocity and acceleration are
stochastically uncorrelated, the spectral density function of

modal exciting force is

2 . 2
- : 4.
Si(m) cy Suo(m) + C Suo(m) (4.27)

s.d.f of fluid particle velocity
2

Where: 540 ()

= Sn(w)
Siolw) = s.d.f of fluid particle acceleration
4
= 8 {(w)

Sn(m) is the s.d.f of wave elevation.

Substituting in Eg. (4.27) yields

2 4 2 2
Si(w) = Sn(w)(Cau + Cuw )
(4.28)
Where: oC = d
S PRE 2,2
Cu = —i—{\:-é Dexp{-V~/20r )Gr¢izdx
d

+ 7 2DV‘Erf(V//7cr)¢ide]
Q



- d _
C, = CyP é Vze, dx

The mean response of the structure can be determined by
requiring that the solution given by Eq. (4.3) satisfies Eq.
{4.4) on the average.

This requirement leads to the following equation
<g(r)> = 0

d4yo 1
EI L = F0C<(r+V) {r+v]> (4.29)

The expected value of the quantity on the right hand side of
Eqg. (4.29) has been derived in Appendix C.

Substituting the result of Appendix C in Egq. (4.29) leads to

84yo 1 2, 2 5
EI i = A:-é-pCDD[ (V t+or )Erf(V//ZUr)
X

(4.30)
4—{%V gr exp(—V2/2or2}

This equation is the well known beam equation and the right
~hand@ side quantity is the mean, time independent wave-current
induced load. It is interesting to note that the mean load is a

function of the sea state in additinn to current. The dependence

on the sea state is caused by the nonlinearity in drag force. 1If
the drag force was linear, the mean load would have been a

function of current only.



The mean structur:l dellecting ¢an »e obtained by reprated

integration of Eq. (4.30) and application of appropriate boundary

conditions.

4.2 Computation

It is apparent from Egs. (4.19) and {(4.20) that the modal
viscous damping and exciting force depend on the structural
response. This necessitates the adoption of an iterative
procedure for the determination of the damping and response.

From the computation done in this study, it has been observed
that the rate of convergence depends primarily on the response of
the structure. When the structural response is small in
comparison to fluid particle motion, the rate of convergence is
rapid.

The modal quantities given by Egs. (4.19) and (4.20) are
evaluated by numerical integration, because most of the
quantities in the integrands are not defined analytically. For
numerical integration, Simpson three point rule is used. 1In the
software developed, five equally spaced integration stations are
used over the length of the structure. The numerical integration
has the advantage that any arbitracy current profile and mode
shape can be handled. These quantities need to be defined
numerically at the discrete integration stations.

The damping and response prediction is made using the two

parameter Bretschneider wave spectrum defined as

W W
S, (w) = .3125 72 B suniog 0z 0



It
i

Where: H Significant wave hesight (ft.)

w Wave frequencv corresponding to

P spectral peak {(rad/sec)
The peak frequency (wp), if not known, is estimated in the
following way. For Bretschneider spectra, the peak freguency is
evaluated using the following relation between the peak frequency

and the average zero crcessing period(Tz) (Sarpkaya, 1981).

mp = 4.4588/TZ

The relation between the significant wave height (HS) and
the average zero crossing period is proba»ilistic in nature.
However, for simplicity the following deterministic relation,
proposed by Weigel (Weigel, 1978), has been used.

T, = 1.723H_°>° | (4.32)

2
Tz is in sec. and HS is in ft,.

The Error Function in Egs. (4.19) and (4.20) is approximated
by the following (Abramowitz and Stegun, 1965)

1

2 3 4 4
(l+alx + a,x" + ayx + a,x )
"Where: a, = ,278393
a2 = ,230389
a3 = 000972
a4 = ,078108

Some other approximations were tried. But this particular

one has been found to be well behaved and works better than some

Lt AR Y TR L - 4 = A < v 3 e q FU T e g s -
Litrrrs, P = PTODTILIIATION LS 4L7avs wlonin ©has oound s oaf tho

r

Error Function i.e., betweern zero and one.
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4.2.1The Cxicson ith Low Rvinonse Arolituds

A closed form expression can be derived for the modal
viscous damping when the structural response is negligible
compared to water particle motion. This is done for the first
mode of a caisson in this section.

Since the structural motion is negligible, Eq. {(4.24)
becomes

o_ = o _Z (4.34)

Where 72 is the Depth Attenuation Factor. It is assumed that
current V obeys the same Depth Attenuation law. This assumption
makes the derivation considerably simpler. The choice of current
distribution profile is not crucial. Since, it has been shown in
the later part of this work that current distribution has
negligible influence on the damping and dynamic response.

Based on the assumption made, the current speed at any depth
can be expressed as

V=V 2
o

Where: Vo = Current speed at free surface

Substituting Egs. (4.34) and (4.35) in Eq. (4.19) yields

pCDD

d
_ 8 2 2 2
Svi = ey N5/ exp (V" /20,500, 20) dx
171 0
d 2
+ é 2VOZ Erf(vo//2cuo)¢idx
(4.36)
pC..D .
_ 8 2,02
= ZFEEI-PJ; exp ( VO/2ouo)ouO + 2Vo Erf(VO/J20uO)]



The first mode of a caisson can be approximated by the
following trigonometric function

(%) = 1 - cos (53) (4.37)

Substituting this cpproximation for the mode shape, the

integration in Eq. (4.36) can be evaluated as follows.

Calling this integration G(¢), we can write

d 2 d k{x-d) TR, 2
G(g) = f Z¢ldx = [ e (l—cosf7) dx
o o -
d .
-kd . kx, 1 i irx
= e ge (1-5(exp(57) + exp(-33—)) dx
-ka d kx,3 imx 1 imx
= e (J)'e (~2—J-Zex (-—L-) +Zexp(-L)
1% _ i7x,.
- exp(m§g) - exp( 2L))dx
Performing termwise integration leads to
1 rd i g
_kd .3 kd 174 (2kLcos-+ + 2 sin—)
Clo) =& 77 [3p (e77-1) + =5 72
(x°L7 + 77
v kd ‘
- 2 (4kLcosge + 2 § ng)
4k"L%+m
_x1 . 8KkL?
2. 7.7 53 7]
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Since ka -1 eRd_) = okd
G(¢) = 5% + f——%~—-— (ZkLcosﬂg + 2nsinﬂ%)
4 (k"L +17)
- —wjz%——f (4kL cos%% + 2 sin%%) (4.38)
A4K"L7+m '
) kL2 . gkL’
2ekd(k2L2+n2) eEd('4k2L2+7r2)

Further simplification can be achieved when the depth of
water is nearly equal to caisson length, i.e. d=1,

Under this condition

6(4) = 2 - KL - i
2k 2(k2L2+w25 4k2L2+w2
(4.39)
_ k1> . gkL’
2654 (k%1212 X 4k +1d)
The r.m.s fluid particle velocity
H
g =21 = (4.40)

uo TZ

It can be expressed as a function of significant wave height only
by substituting Egq. (4.32) in Eq. (4.40).
Then Eqg.(4.40) becomes

g = 2T x S = .91 g 44 (4.41)

uo 923 HS'56




Furthermore,

\Y .78V
e} _ C
‘JEB i .44 (4.42)
uo <3
and
v? o lewv ?
5 = 55 (4.43)
25 H
10 5

For the wave number (x), using the deep water dispersion

relation and Eq. (4.32} leads to

: 2 2 2
K = % _ {2TT) _ 47 .412

< = (4.44)
Ty g % (1.723}15‘56)2 Hsl'l2

Qi
|

Substituting Eqs. (4.41), (4.42) and (4.43) in Eg. (4.36)

yields
pC,D i .61y _? .78V
Syi = Toms (16 % .91 HUTT exp(- ——2) + 2V _Erf(——3) 16(4)
171 H *® H_®
. S =1
2
pC_D 1, .61V .78V
= e [1.4568_ 7 exo(- —5 ) + 2V, Erf(—5a ()
191 H_C H

(4.45)
G(¢), which is a function of the mode shape, is given by either
Eq. (4.38) or Eg. (4.39)

The wave number (k), which is needed in the evaluation of
G(¢), is given by Eg. (4.44)

Eq. (4.45) provides a means for the prediction of modal
viscous darping of a czisson in presence of waves and curreﬁt.
This equation is not very accurate for the prediction purposes,

but it gives a feel for relative influences of different
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4.2.2Flevible Cais=on

The Calsson analyzed in this section is located at West
Cameron Block 32 in the Gulf of Mexico. It is owned and operated

by Mobil 0il Co. The particulars of the Caisson are as below.

Total Length
Water Depth
Leg Diameter

230.0 ft.

175.0 ft.

Tapers From 16 ft., at Mudline to
8 ft. at the Waterline

nnh

Steel Mass = Varies From 181.42 slugs/ft., at
Mudline to 24.65 slugs/ft. at
deck level

Deck Mass 2484,.50 slugs

Natural Frequency 2.89 rad/sec.
Non viscous Damping 1.4%

The Caisson is assumed to respond in the first mode only and

the mode shape is shown in Fig.2.

A sensitivity analysis has been carried out and the
influence of the following engineering parameters on the dynamic
behaviour of the Caisson has been studied.

(1) Sea state, defined by significant wave height(Hs)

(2) Current speed (V)

{3) Frequency ratio, defined as the ratio of the first
natural fregquency of the structure (wn) and the peak
spectral frequency(mp)

(4) Drag coefficient(CD)

(5) Current distribution parameter (C.,). This is defined
as the ratio of the area under thg current distribution
profile and the area of the largest rectangle enclosing
it. A linear profile has a ratio of 1/2.

Figs. 4 and 5 show the variatioun of damping and response

with sea state and current speed. Damping increases considerably

with current speed and significant wave height. The response

increases with sea state (Fig. 5), but is hardly influenced by



current., Tt Has ooea sLloos iy doacngtrabod At owayed oot gurrenk
contribute to both excitation and damping, Therefore the
variation of response with changing sea state or current depends
on the relétive magnitudes of modifications in damping and
excitation, For the Caisson, the response increases with sea
state, because the increase in excitation is not fully offset by

the increase in damping. Similarly, the response increases with

In

current, becausa thes increass in avcitation is not fully offset
by the increase in damping due to current, |

The deck response standard deviation and the modal damping
ratio are plotted agai:st the frequency ratio (mn/wp) in Figs. 6
and 7. Damping is found to be inversly related to frequency
ratio, The plot of response standard deviation vs. frequency
ratio resembles the response behaviour of a deterministic dynamic
system under harmonic excitation. Like the resonance of a
deterministic system, the respﬁnse standard deviation reaches its
peak when the frequency ratio is close to one.

In the present analysis a constant drag coefficient has been
used. However, the drag coefficient is a function of Reynold No.
and Keulegan Carpenter No, This means that the drag coefficient
is time dependent and also varies albng the length of the
structure. To find out the consequences of applying a constant
drag coefficient, damping and response standard deviation have
been plotted against the drag coefficient (CD) in Figs. 8, 9, 10
and 11. The response is found to be rather insensitive to drag
coefficient. The damping increases with the drag coefficient.

- - -
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distributicn have neqgligible effects on damping and response.

4.2.3 Guved Towser

In this section, the results of an analysis for a Guyed
Tower are presented. The purpose here is not to predict the
design values, but to present characteristic response quantities.
The relative significance of some important environmental and
structural parameters is investigated and some specific
conclusions drawn.

A Guyed Tower is a compliant structure (Fig. 13). The guy
lines provide the soft restoring force, The tower is essentially

a truss work built between four corner legs. The tower rests on

a piled foundation. The tower base can be idealised to be free
to rotate,but fixed against sliding.

The particulars of the specific tower considered are

given below

Total Length = 1804.0 ft.
Water Depth = 1689.2 ft.

Leg Diameter = 6.56 ft,

Steel Mass = 530.0 slugs/ft.
Deck Mass = 374294.0 slugs
Sway Mode Natural Frequency = .20 rad/sec.

Bending Mode Natural Fregquency

1.4 rad/sec,

Bending Mode Non Viscous Damping 2.0%

The first two natural modes of vibration are shown in Fig.
14. In the present analysis it is assumed that the tower

-, P - E T M N e, . . Tl e P et DA . .
S2ELOnTs only I thoose two o a ot Thor Doz TR rigid body

S AP P ey A



rotation and the response in this mode is determined by the tower
mass and guy stiffness. This is referred to as the sway mode,
The response in the second mode, called the bending mode here, is
dictated by the tower mass and flexural stiffness.

The response in the sway mode is not computed here. This
mode is primarily excitad by the second order wave forces and
wind forces, both of which are difficult to model in the
frequency domain in spectral terms. The standard deviation of
the sway mode response is input as a known gquantity.

The two quantities that have been predicted are the viscous
damping ratio and the standard deviation of deck response in the
bending mode. The second response quantity is by itself not very
important because the deck response is primarily caused by the
sway mode. However, the deck response in the bending mode is a
measure of the tower bending moment. PBecause the standard
deviation of bending moment is directly proportional to the
standard deviation of displacement response.

The influence of the following parameters on the bending
mode response has been investigated.

{1} Significant wave height (Hs)

(2) Current speed (V)

{3} Standard daviation of dec response in the sway mode
(o.)

£
Ig



(4) Ratio of bending mode natural frequeney and frequency
of spezotral ponk (o /up)

‘'
(5) Current distribution parameter (CV)' which has already
been defined

(6) Drag coefficient (CD)
The sway mode motion influences the damping and excitation in the
bending mode through Eq. (4.24).

Examination of Figs. 15, 16, 17, 18, 19, 20 reveals that the
damping in the bending mode is very sensitive to current and the
sway mode response, but very little influenced by the sea state.
This is because wave induced water particle velocity attenuates
qg}y rapidly in moderate sea states. It is predominant near the
free surface. Therefore, the standard deviation of relative
fluid-structure velocity (0.} and the equivalent damping
coefficient are dominated by the sway mode response and ocean
current. The response in the bending mode increases initially
with significant wave height (Figs. 16, 18, 20) but then flattens
out for high sea states. This is probably because the spectral
peak frequency moves away from the bending mode natural frequency
as the significant wave height goes up.

Although the standard deviation of bending mode response

decreases with increasing current (Fig. 16), the
r.m.s. response will not necessarily follow the same trend.
Because, the r.m.s value depends on mean deflection, which
increases with current (Eq. 4.30).

In Figs. 22 and 24 the bending mode response standard
deviation has been plotted against the freguency ratio. The

resonance like effect is noticeable here also, like the Caisson.



This becomas @more pronoussasd as the sea state goes up,

From Fig. 25 it is observed that damping increases and
response decreases as the variation of current with depth gets
more uniform.

In Fig. 26 damping and response are plotted against drag
coefficients. Unlike the caisson, damping increases and response

decreases with increasing drag coefficients.
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A simple approach bazed on the Stochastic Linearization
technique has been presented for the dynamic response analysis of
offshore structures, excited by waves and current. Because of
the presence of current, the drag force is asymmetric.
Consequently, the stationary solution for sfructural response
consists of superposition of a time independent deterministic
offset and a randomly fluctuating component. The main focus in
this study has been on the randomly fluctuating component of
response; But the equation for deterministic offset has been
derived.

The Stochastic Linearization technique replaces the original
nonlinear drag term with an equivalent (optimal) linear drag
term. The equivalent linear equation has been employed with an
iterative numerical scheme, to.obtain an approximate solution for
the standard deviation of response of the original nonlinear
system.

Parametric studies have been conducted on a stiff, shallow
water structure and a compliant, deep water structure. These
studies have helped to gain insight into the dynamic behaviour of
offshore structures. 2lso, based on these studies some general
comments can be made. For shallow water structures, sea state
appears to have the most significant influence on the dynamic
response of the structure., On the other hand, for deep water
compliant structures the dynamic behaviour in the bending mode
depends primarily on the compliant mode response and the ocean

carrent.  Heanunil 173 relatively lnsigailicaac d3:s.gn



parssetar,  liguvover, L1315 non nacossarily true for the
response in the compliant mode. For deep water compliant
structures, the response in the bending mode depends heavily on
the drag coefficient value. Therefore a judicious selection of

drag coefficient is important.
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APTTEDIN A

Proof of Gaussian Identity:

9E)rr | & s

<r®s dr

By definition

<%f' g(r)> = fwd%l(:l:lp(r) ar
where
p(r}) = Gaussian probability density function for the
random variable "r"
=1 exp (-r?/20r%) (A.1)
Y2mor

Integrating by parts

9> =p@am| -5 ®BEL grar

OO
-0

Taking derivative of p(r) and substituting

<g_r g(r)> = -f° g(xr) (—r/crz)p(r)dr

= _}_2_ fm Tr g(r)p(r)dr = %
or -0 <r >



APDLNDIX B

Evaluation of <2|r+v|>.

The expected value of a function of a random variable can
be computed without first determining the complete probability
structure of the function, provided the function is a Borel
function. For our purposes, it suffices to know that a function
with at most a finite number of discontinuities is a Borel
function.

Assuming that |r+v| is a function of r, which satisfies

such properties, we can write

<Jr+v|> = f° |r+v| plx) ar = 1 e |r+V|exp(—r2/20r2)dr
-0 orv2Zmn - :
=t [—f-v(r+V)exp(-r2/20r2ﬂr + 2 (r+V)exp(—r2/20r%dr]
orvZm —® -V

(B.1)

Breaking up the limits of the second integration we have

Y -V
<lr+v|> = 1 _ [ - J exp(-r2/20r2) - f exp(—r2/2cr2)dr
orv2mn -0 —
v 2, 2 v 2, 2
+ [ Vexp(-r®/2cr“dr + / r exp(-r“/2¢xr”)ar
-V =V
+ /7w exp(—rz/Zcrﬁdr + 7 exp(—rz/Zcrz)dr] (B.2)
v v

Application of properties of even andodd function leads to:

%0 AV

i 1 . 2l 2 s at 2 a
<Jpeyls o= =2 [ r exp(-xr /257 )dr+2V [ exp(~-r~ ‘Zer7)dr]
cr\PTr v ]
- 1 :
= (2I; + 2vI,)

orafe
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Where the auxiliary variubles

I, = " exp(-r2/20r2)dr (B.4)
v
and
I2 = fv exp (—r2/2or2)dr

Q

Breaking up the limits of integration for Il’ we have
o v

I, =/ «r exp(—r2/20r2)dr - f

1 r exp(—r2/20r2)dr
o o

(B.4)

For the first integration in (B.4) the following integration

result is used.

O e b (-at®yat = B
n+l
O 2a .
and we have
v
I, = ___li_— - (-crz) exp (~r2/20r2)
2 2) o)
20r
= orl.+ or? [exp(-v%/20r%) - 1]
= dr2 exp (—V2/20r2) (B.5)

12 is evaluated using the following result

u —
s exp(-qzxz) dx = —%— Erf (qu)
o)



I, = —XE:;—-Erf (V/vVZor)

2//§0r

arvm

= Erf{v/v2or) (B.6)

Substituting Egs. (B.5) and (B.6) in Eg. (B.3)

<|r+v|> = 1 (2002 exp (-v2/201r?)
orvam
+ 2y 9EVT Exrf(v//Zor)]
V2
= % ' % gr exp(—V2/20r2) + VErf(v/v2or)
Finally

<2|r+vi> = % or exp(—V2/20r2) + 2 VErf(v/vZor)
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Evaluation of <(r+V)lr+v|>

Following the same arguments as in Appendix B

a0

<{r+V) |x+V|> = [ (r+V) |r+V|p(r)dr

- 00

-V
1 _ { - f (r+V)2 exp(—rz/ZGrz)dr

orvam )

oo

+ f (r+V)2exp(-r2/20r2)dr]
-V

v v

i

rzexp(-rz/Zgrz)dr
orvam

v? exp(—r2/2cr2)dr - f
-V

-V v
- 2vf r exp(-r2/20r2)dr + f V2 exp(—r2/2gr2)dr
-0 _V

v 2 2 2 v 2, 2
+ [ r" exp(-r /2or”)dr + 2VJ r exp(-r“/20r°)dr
v -v

+ f Vzexp(-r2/20r2)dr + o r2 exp(—r2/20r2)dr
v v

@D

+ 2V/ r exp(-r2/20r2)dr]
A\

= [avr «r exp(—r2/20r2)dr
orver 7
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Lad

v v
+2V2fO exp (-r°/20r%)dr + 2f0r2 exp(-r°/20x%)dr) (C.1)

The first two integrations in (C.l)} are already evaluated in

Appendix B and the third intégration is evaluated as follows:

v
\'
S r2 exp(-r2/20r2)dr = (rfxr exp(—r2/20r2dr))

]

o]
(o]

v
-5 - 0r2 exp(~r2/20r2)dr
[@] .

v
= —or2 v exp(—V2/26r2) + or2 fo exp(-r2/2cr2)dr

2 orvm
V2

= —0r2 v exp(-V2/20r2) + or Erf (V/V20or)

Substitution of this result and results of Appendix B in

Egq. (C.1l) leads to

<(r+V) |z+V|> = 1 [4Vcr2 exp(-V2/20r2) +
orv2m
+ 2V2 95{5 Erf(V/Jfgr) - 2Vcr2exp(—V2/2cr2)
Y2
¢ 202 9T per (v//Zor) )
V2
2Vor 2 2 2V2 e ZUrZ/F
= exp(-v°/20r®) + (/—F— + ) Ecf (V/V20r)
vam I/.ZTH’C. f?}/j

v 2 e—Vz/ZGr2 + (V2 + Urz)Erf(V//for)
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